Wayne Kerr
Electronics

PRECISION COMPONENT ANALYZER 6430B / 6440B

Product Specification

Issue B

USA	UK	Asia
Wayne Kerr Electronics Inc.	Wayne Kerr Electronics	Wayne Kerr Asia
165L New Boston Street	Vinnetrow Business Park	A604 Pengdu Building,
Woburn MA 01801-1744	Chichester	Guimiao Road,
Tel: 7819388390	West Sussex PO20 1QH	Nanshan District,
Fax: 7819339523	Tel: $+44(0) 1243792200$	Shenzhen, Guangdong
email: sales@waynekerr.com	Fax: $+44(0) 1243792201$	China
www.waynekerrtest.com	email: sales@wayne-kerr.co.uk	Tel: +8613066830676
	email: service@wayne-kerr.co.uk www.waynekerrtest.com	Fax: +86 75526523875
		Email: sales@waynekerr.com
		service@waynekerr.com

The copyright in this work is vested in Wayne Kerr Electronics and this document is issued for the purpose only for which it is supplied. No licence is implied for the use of any patented feature. It must not be reproduced in whole or in part, or used for tendering or manufacturing purposes except under an agreement or with the consent in writing of and then only on the condition that this notice is included in any such reproduction. Information furnished is believed to be accurate but no liability in respect of any use of it is accepted by Wayne Kerr Electronics.

CONTENTS

16430 SPECIFICATION 1-1
1.1 Measurement Parameters 1-1
1.2 Test Conditions 1-1
1.2.1 AC Drive. 1-1
1.2.2 DC Bias Voltage 1-2
1.2.3 Drive Level ($R d c$) 1-3
1.3 Measurement Speeds 1-3
1.3.1 Capacitor Mode 1-3
1.4 Measurement Ranges 1-3
1.5 Hardware Ranges 1-4
1.6 Modes Of Operation 1-4
1.6.1 MEASUREMENT 1-4
1.6.2 DEVIATION 1-4
1.6.3 MULTI FREQUENCY 1-4
1.6.4 BINNING (Optional) 1-5
1.6.5 CAPACITOR (Optional) 1-5
1.7 Measurement Connections 1-5
1.8 Measurement Accuracy 1-6
1.8.1 Resistance / Reactance (R / X) 1-7
1.8.2 Conductance / Susceptance (G/B) 1-7
1.8.3 Capacitance (C) 1-7
1.8.4 Inductance (L) 1-8
1.8.5 Dissipation Factor (D) 1-8
1.8.6 Quality Factor (Q) 1-8
1.8.7 DC Resistance ($R d c$) 1-9
1.9 Accuracy Charts 1-9
1.9.1 $R / G / Z^{*}$ Accuracy 1-10
1.9.2 C Accuracy. 1-11
1.9.3 L Accuracy. 1-12
1.9.4 D Accuracy 1-13
1.9.5 Q Accuracy. 1-14
1.10 Additional Corrections 1-15
1.10.1 Open Circuit Trim Correction 1-15
1.10.2 Short Circuit Trim Correction 1-15
1.11 General 1-16
1.11.1 Power Supply 1-16
1.11.2 Display 1-16
1.11.3 Printer Output 1-16
1.11.4 Remote Control 1-16
1.11.5 Remote Trigger. 1-16
1.11.6 Mechanical. 1-16
1.12 Environmental Conditions 1-16
1.12.1 Temperature Range 1-16
1.12.2 Relative Humidity. 1-17
1.12.3 Altitude 1-17
1.12.4 Installation Category 1-17
1.12.5 Pollution Degree 1-17
1.12.6 Safety 1-17
1.12.7 EMC 1-17
26440 SPECIFICATION 2-1
2.1 Measurement Parameters 2-1
2.2 Test Conditions 2-1
2.2.1 AC Drive 2-1
2.2.2 DC Bias Voltage 2-2
2.2.3 Drive Level ($R d c$) 2-3
2.3 Measurement Speeds 2-3
2.3.1 Capacitor Mode 2-3
2.4 Measurement Ranges 2-4
2.5 Hardware Ranges 2-4
2.6 Modes Of Operation 2-5
2.6.1 MEASUREMENT. 2-5
2.6.2 DEVIATION. 2-5
2.6.3 MULTI FREQUENCY 2-5
2.6.4 GRAPH 2-5
2.6.5 BINNING (Optional) 2-5
2.6.6 CAPACITOR (Optional) 2-6
2.7 Measurement Connections 2-6
2.8 Measurement Accuracy 2-6
2.8.1 Resistance / Reactance (R / X) 2-7
2.8.2 Conductance / Susceptance (G / B) 2-8
2.8.3 Capacitance (C) 2-8
2.8.4 Inductance (L) 2-9
2.8.5 Dissipation Factor (D) 2-9
2.8.6 Quality Factor (Q). 2-10
2.8.7 DC Resistance (Rdc). 2-10
2.9 Accuracy Charts 2-10
2.9.1 R/G/Z* Accuracy 2-11
2.9.2 C Accuracy 2-12
2.9.3 L Accuracy 2-13
2.9.4 D Accuracy 2-14
2.9.5 Q Accuracy 2-15
2.10 Additional Corrections 2-16
2.10.1 Open Circuit Trim Correction 2-16
2.10.2 Short Circuit Trim Correction 2-17
2.10.3 Fine Frequency Setting Corrections 2-17
2.11 General 2-18
2.11.1 Power Supply 2-18
2.11.2 Display. 2-18
2.11.3 Printer Output 2-18
2.11.4 Remote Control. 2-18
2.11.5 Remote Trigger 2-18
2.11.6 Mechanical 2-18
2.12 Environmental Conditions 2-18
2.12.1 Temperature Range 2-18
2.12.2 Relative Humidity 2-19
2.12.3 Altitude 2-19
2.12.4 Installation Category 2-19
2.12.5 Pollution Degree 2-19
2.12.6 Safety 2-19
2.12.7 EMC 2-19
3 THEORY REFERENCE 3-1
3.1 Abbreviations 3-1
3.2 Formulae 3-1
3.3 Series/Parallel Conversions 3-2
3.4 Polar Derivations 3-2

16430 SPECIFICATION

Wayne Kerr Electronics Limited reserves the right to change specification without notice

1.1 Measurement Parameters

Any of the following parameters can be measured and displayed.

DC Functions

Resistance (Rdc).

AC Functions

Capacitance (C), Inductance (L), Resistance (R), Conductance (G), Susceptance (B), Reactance (X), Dissipation Factor (D), Quality Factor (Q), Impedance (Z), Admittance (Y) and Phase Angle (θ).

The following display formats are available.

Series or Parallel Equivalent Circuit

$\mathrm{C}+\mathrm{R}, \mathrm{C}+\mathrm{D}, \mathrm{C}+\mathrm{Q}, \mathrm{L}+\mathrm{R}, \mathrm{L}+\mathrm{Q}$
Series Equivalent Circuit Only
$\mathrm{X}+\mathrm{R}, \mathrm{X}+\mathrm{D}, \mathrm{X}+\mathrm{Q}$

Parallel Equivalent Circuit Only

C+G, B+G, B+D, B+Q
Polar Form
Z + Phase Angle, Y + Phase Angle

1.2 Test Conditions

1.2.1 AC Drive

Frequency Range

20 Hz to $500 \mathrm{kHz}>1000$ steps
Accuracy of set frequency $\pm 0.005 \%$

Pre-set frequencies

$20,25,30,40,50,60,80,100,120,150$; repeats for each decade.
Step size is 1% or better through the frequency range when the 6430B Analysis option is fitted.

Drive Level (AC Measurements)

Open Circuit Voltage	Short Circuit Current	Frequency Range
1 mV to 10 V rms	$50 \mu \mathrm{~A}$ to 200 mA rms	up to 300 kHz
1 mV to 5 V rms	$50 \mu \mathrm{~A}$ to 100 mA rms	up to 500 kHz

Signal source impedance: 50Ω nominal

Step Size

Voltage Drive		Current Drive	
Step size	up to drive level	Step size	up to drive level
1 mV	100 mV	$50 \mu \mathrm{~A}$	5 mA
2 mV	200 mV	$100 \mu \mathrm{~A}$	10 mA
5 mV	500 mV	$200 \mu \mathrm{~A}$	20 mA
10 mV	1 V	$500 \mu \mathrm{~A}$	50 mA
20 mV	2 V	1 mA	100 mA
50 mV	5 V	2 mA	200 mA *
100 mV	10 V *		

* Drive levels are reduced to 9 V and 180 mA at 40 Hz or below.

User-selectable Automatic Level Control (ALC) ensures that the drive level at the device under test (DUT) is $\pm 2 \% \pm 1 \mathrm{mV}$ of set voltage or $\pm 2 \% \pm 0.1 \mathrm{~mA}$ of set current at or above 100 Hz .

Drive level accuracy degrades below $100 \mathrm{~Hz}: \pm 3 \% \pm 1 \mathrm{mV}$ or $\pm 3 \% \pm 0.1 \mathrm{~mA}$ at 50 Hz

$$
\pm 5 \% \pm 1 \mathrm{mV} \text { or } \pm 5 \% \pm 0.1 \mathrm{~mA} \text { at } 20 \mathrm{~Hz}
$$

With DC bias applied the maximum drive voltages indicated above are halved.

1.2.2 DC Bias Voltage

A DC bias voltage derived from an internal or external source can be applied to capacitors during AC measurements.

Internal

DC bias of $2 \mathrm{~V} \pm 5 \%$.
Peak short circuit current $<90 \mathrm{~mA}$.

External

External bias of up to $\pm 60 \mathrm{~V}$ is provided by connecting an external power supply to the rear panel bias terminals. The voltage required at the rear terminals is 5% higher than the voltage at the DUT.

A bias load of 220Ω is permanently connected across the rear panel bias terminals.
Steady state short circuit load: 70Ω.
A resettable trip protects the bias circuit against a continuous short circuit.

1.2.3 Drive Level (Rdc)

Two selectable drive levels:

Open circuit voltage	Short circuit current
$100 \mathrm{mV} \pm 7 \%$	1 mA
$1 \mathrm{~V} \pm 7 \%$	10 mA

Source resistance: 100Ω nominal.

1.3 Measurement Speeds

Four selectable speeds for all measurement functions. Selecting slower measurement speed increases reading resolution and reduces measurement noise by averaging.

The following measurement periods apply for Rdc or for AC measurements $\geq 100 \mathrm{~Hz}$.
Maximum speed (intended for automatic sorting) $\approx 50 \mathrm{~ms}$.
Fast speed (for non-critical measurements) $\approx 100 \mathrm{~ms}$.
Medium speed (for improved resolution) $\approx 300 \mathrm{~ms}$.
Slow speed (for best resolution and enhanced supply frequency rejection) $\approx 900 \mathrm{~ms}$.

1.3.1 Capacitor Mode

Two frequency measurement $\approx 180 \mathrm{~ms}$.

1.4 Measurement Ranges

$\mathrm{R}, \mathrm{Z}, \mathrm{X} \quad 0.01 \mathrm{~m} \Omega$ to $>2 \mathrm{G} \Omega$
G, Y, B $\quad 0.01 \mathrm{nS}$ to $>2 \mathrm{kS}$
L $\quad 0.1 \mathrm{nH}$ to $>2 \mathrm{kH}$
C $\quad 1 \mathrm{fF}$ to $>1 \mathrm{~F}$
D $\quad 0.00001$ to >1000
Q $\quad 0.00001$ to >1000
Rdc $\quad 0.1 \mathrm{~m} \Omega$ to $>10 \mathrm{M} \Omega$
For L and C , the lower range is available at 10 kHz and 100 kHz ; the upper range is available at 100 Hz and below.

1.5 Hardware Ranges

The hardware range used is determined by the impedance being measured, the frequency and the level. The table below lists the boundaries of operation for AC measurement functions. The hardware range being used is indicated in the top-left-hand-corner of the instrument display.

Range number	Impedance coverage	Frequency coverage up to
1	$<1 \Omega$	100 kHz
2	$<10 \Omega$	500 kHz
3	$<50 \Omega$	500 kHz
4	$>50 \Omega$	500 kHz
5	$>250 \Omega$	500 kHz
6	$>2.5 \mathrm{k} \Omega$	500 kHz
7	$>25 \mathrm{k} \Omega$	100 kHz
8	$>250 \mathrm{k} \Omega$	10 kHz

For drive levels below 100 mV , the highest range at each frequency is not available.
For drive levels below 20 mA , range 1 is not available.
For drive levels below 0.5 mA , range 2 is not available.

1.6 Modes Of Operation

1.6.1 MEASUREMENT

Selection of any measurement parameter and test condition.
Single-level function-menu controlled by keypad and soft keys.
Single and repetitive measurements displaying major and minor terms.
Analogue scale with configurable $\mathrm{Hi} / \mathrm{Lo}$ limits giving PASS/FAIL indication (connected to logic output on binning option).

1.6.2 DEVIATION

Similar to MEASUREMENT MODE but relative or percentage deviation from nominal value displayed for major or minor term. There is no analogue scale in DEVIATION MODE.

1.6.3 MULTI FREQUENCY

Measurement parameters and test conditions set using MEASUREMENT MODE.
Up to 8 frequencies with configurable major and minor term limits.
PASS/FAIL indication (connected to logic output on binning option).

1.6.4 BINNING (Optional)

Measurement parameters and test conditions set using MEASUREMENT MODE.
8 PASS bins with absolute or percentage limits and 1 FAIL bin. Up to 99 sets of limits may be saved.

Bin count function logs the number of components in each bin.
Separate dedicated output for PASS/FAIL indication driven by analogue scale limits in MEASUREMENT MODE or by test limits in MULTI FREQUENCY MODE.

Trigger input with pull-up, operates on logic low or contact closure.
Handshake outputs indicating measure busy and data valid status.
25-way D-type interface connector.

Output Levels (B1 Option)

Output High: $>4 \mathrm{~V} \quad$ Output Low: $<1 \mathrm{~V}$
Input High: $\quad>3.5 \mathrm{~V} \quad$ Input Low: $<1.5 \mathrm{~V}$
Drive capability typically is $10 \mathrm{~mA} \operatorname{sink}$ (low) and $30 \mu \mathrm{~A}$ (high).

Output Levels (B2 Option)

This option provides an opto-coupled interface.
Output On state current: up to 10 mA at $24 \mathrm{~V} \quad$ Output Off state current: $<0.5 \mathrm{~mA}$
Output On state voltage: Input voltage -1.5 V at 10 mA
Input High current: $\quad>3 \mathrm{~mA} \quad$ Input Low current: $<1.25 \mathrm{~mA}$
Input High voltage: $\quad>15.4 \mathrm{~V}$
Input Low voltage: $<8 \mathrm{~V}$

1.6.5 CAPACITOR (Optional)

Combines the Multi Frequency and Binning modes for efficient testing of capacitors.
Measurement parameters and test conditions set using MEASUREMENT MODE.
Up to 8 frequencies with configurable major and minor term limits. The first frequency may be tested against up to 9 bins. The Major term is tested to a tolerance limit while the Minor term is compared to a relative limit. Measurements at subsequent frequencies may be compared to a single reject limit. A measurement term swap function is available if the minor term is required to be tested against a tolerance limit.

1.7 Measurement Connections

4 front panel BNC connectors permit 2-, 3- and 4-terminal connections with the screens at ground potential.

Terminals withstand connection of charged capacitor up to following limits:

- any value capacitor charged up to 50 V , either polarity;
- a capacitor charged to between 50 V and 500 V with a stored energy of less than 0.25 J , either polarity.

1.8 Measurement Accuracy

The accuracy statements given apply when the instrument is used under the following measurement conditions.
$1 \mathrm{~V}(\mathrm{DUT}>50 \Omega)$ or $20 \mathrm{~mA}(\mathrm{DUT}<50 \Omega)$, slow speed, 4-terminal measurement. The instrument must have warmed up for at least 30 minutes at a steady ambient temperature of between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. The instrument must have been trimmed with Wayne Kerr Kelvin leads or a Wayne Kerr 1006 fixture at the measurement frequency.

For frequencies above 20 kHz with the Analysis option fitted, HF lead compensation must have been performed.

For other frequencies and speeds see section 1.9-Accuracy Charts.

1.8.1 Resistance / Reactance (R / X)

Frequency	Accuracy \% (for $Q<0.1$)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1Ω to $1.6 \mathrm{M} \Omega$
1 kHz (Notes 1,2$)$	0.02	10Ω to $100 \mathrm{k} \Omega$
1 kHz	0.05	1Ω to $1.6 \mathrm{M} \Omega$
10 kHz	0.05	2Ω to $700 \mathrm{k} \Omega$
10 kHz	0.1	0.3Ω to $4.7 \mathrm{M} \Omega$
100 kHz	0.2	1.1Ω to $100 \mathrm{k} \Omega$

For $Q \geq 0.1$ multiply accuracy figures by $(1+Q)$.

1.8.2 Conductance / Susceptance (G / B)

Frequency	Accuracy \% (for Q<0.1)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	$0.63 \mu \mathrm{~S}$ to 1 S
$1 \mathrm{kHz}{ }^{(\text {Notes } 1,3)}$	0.02	$10 \mu \mathrm{~S}$ to 0.1 S
1 kHz	0.05	$0.63 \mu \mathrm{~S}$ to 1 S
10 kHz	0.05	$1.4 \mu \mathrm{~S}$ to 0.5 S
10 kHz	0.1	$0.22 \mu \mathrm{~S}$ to 3.3 S
100 kHz	0.2	$10 \mu \mathrm{~S}$ to 0.9 S

For $Q \geq 0.1$ multiply accuracy figures by $(1+Q)$.

1.8.3 Capacitance (C)

Frequency	Accuracy \% (for D < 0.1)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1 nF to 1 mF
1 kHz	0.05	100 pF to $100 \mu \mathrm{~F}$
10 kHz	0.05	60 pF to $10 \mu \mathrm{~F}$
100 kHz	0.2	10 pF to $1 \mu \mathrm{~F}$

For $D \geq 0.1$ multiply accuracy figures by ($1+\mathrm{D}$).

1.8.4 Inductance (L)

Frequency	Accuracy \% (for Q > 10)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1 mH to 1000 H
1 kHz	0.05	$100 \mu \mathrm{H}$ to 100 H
10 kHz	0.05	$20 \mu \mathrm{H}$ to 10 H
100 kHz	0.2	$4 \mu \mathrm{H}$ to 200 mH

For $Q \leq 10$, multiply the accuracy figure by $(1+1 / Q)$.

1.8.5 Dissipation Factor (D)

Frequency	Accuracy (Ad)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.0005	1 nF to 1 mF
1 kHz (Note 1)	0.0002	1 nF to $100 \mu \mathrm{~F}$
1 kHz	0.0005	100 pF to 1 mF
10 kHz	0.0005	100 pF to $10 \mu \mathrm{~F}$
100 kHz	0.002	10 pF to $3 \mu \mathrm{~F}$

For capacitors within the ranges shown above , D accuracy $= \pm A_{d}\left(1+D^{2}\right)$.

1.8.6 Quality Factor (Q)

Frequency	Accuracy \% (A)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	4 mH to 1000 H
1 kHz	0.05	$100 \mu \mathrm{H}$ to 100 H
10 kHz	0.05	$20 \mu \mathrm{H}$ to 10 H
100 kHz	0.2	$4 \mu \mathrm{H}$ to 200 mH

For inductors within the ranges shown above , Q accuracy $= \pm A_{L}(Q+1 / Q)$.

1.8.7 DC Resistance (Rdc)

Drive Level	Accuracy \%	Range for specified accuracy
100 mV	0.25	10Ω to $10 \mathrm{k} \Omega$
1 V	0.1	1Ω to $100 \mathrm{k} \Omega$

Notes:

1) Accuracy is typical for $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, guaranteed for $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
2) Accuracy applies to resistance only.
3) Accuracy applies to conductance only.

1.9 Accuracy Charts

Iso-accuracy charts define the measurement ranges available, at specified accuracies, over the available frequency band. All curves assume that Slow measurement speed is used, that the analyzer has been trimmed at the frequency used for measurements, that both factory calibration and self calibration are valid and that the component under test is pure. Beside each chart is a summary of these conditions and the information on the accuracy applicable when some or all of the conditions change.

For above and below the ranges indicated in the following charts, the accuracy degrades linearly with increasing/decreasing DUT value. For example, $470 \mathrm{M} \Omega$ and $2.5 \mathrm{~m} \Omega$ measured at 10 kHz are both a factor of 10 beyond the indicated range for 1% and will each have an accuracy of 10%.

Measurement accuracy for the optional Capacitor mode conforms to the maximum speed setting.
1.9.1 R / G / Z* Accuracy

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$
Slow Speed. 4-Terminal Mode. Analyzer trimmed at measurement frequency.
Q ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

* R / G Only
typical figure for $25 \pm 10^{\circ} \mathrm{C}$,
guaranteed for $25 \pm 5^{\circ} \mathrm{C}$.
O/C and S/C trim corrections under various conditions of interpolation, speed and level are given in the table following these iso-accuracy charts.
For impure components, and for measurements of the highest and owest available ranges, full accuracy expressions, shown below, apply
f $1>Q>0.1$, multiply R accuracy by (1+Q).
For $Q>1$ (loss resistance of inductor) see Q accuracy chart.
For $\mathrm{D}<1$ (loss resistance of capacitor) see D accuracy chart.

High resistance values

Accuracy $= \pm\left(A+100 Y_{T} . R_{X}\right) \%$.

Low resistance values

Accuracy $= \pm\left(A+100 R_{T} / R_{X}\right) \%$ where:
A = accuracy from adjacent chart. $\mathrm{R}_{\mathrm{X}}=$ measured value of unknown component.
$R_{T}=$ sum of Z_{I}, Z_{L} (as appropriate, from section 1.10.2).
$Y_{T}=$ sum of Y_{I}, Y_{L} (as appropriate, from section 1.10.1).
Conductance (G)
Find accuracy for equivalent R value from $R=1 / G$.

Admittance (Y)

Find accuracy for equivalent Z value from $Z=1 / Y$.
1.9.2 C Accuracy

Conditions

AC Drive Level: 1V/20mA
Slow Speed. 4-Terminal Mode.
Analyzer trimmed at measurement frequency.
D ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.
O / C and S / C trim corrections under various conditions of interpolation, speed and level are given in the table following these iso-accuracy charts.
For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.
If $D>0.1$, multiply C accuracy by (1+D).
High capacitance values
Accuracy $= \pm\left(A+100 X_{T} . \omega C_{X}\right) \%$

Low capacitance values

Accuracy $= \pm\left(A+100 C_{T} / C_{X}\right) \%$ where

A = accuracy from adjacent chart
$\mathrm{C}_{\mathrm{X}}=$ measured value of unknown component.
$\mathrm{X}_{\mathrm{T}}=$ sum of $\mathrm{Z}_{\mathrm{I}}, \mathrm{Z}_{\mathrm{L}}$ (as appropriate, from section 1.10.2)
$\mathrm{C}_{T}=$ sum of $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}}$ (as appropriate, from section 1.10.1)
$\omega=2 \pi$. frequency

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$ Slow Speed. 4-Terminal Mode. Analyzer trimmed at measurement frequency.
$Q \geq 10$
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.
O / C and S / C trim corrections under various conditions of interpolation, speed and level are given in the table following these iso-accuracy charts.
For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.
If $Q<10$, multiply L accuracy by ($1+1 / \mathrm{Q}$).

High inductance values

Read accuracy direct from chart

Low inductance values

Accuracy $= \pm\left(A+100 L_{T} / L_{x}\right) \%$ where

A = accuracy from adjacent chart $\mathrm{L}_{\mathrm{x}}=$ measured value of unknown component.
$\mathrm{L}_{\mathrm{T}}=$ sum of $\mathrm{L}_{\mathrm{L}}, \mathrm{L}_{\mathrm{L}}$ (as appropriate, from section 1.10.2)

1.9.4 D Accuracy

Conditions

AC Drive Level: 1V/20mA
Slow Speed. 4-Terminal Mode.
Analyzer trimmed at measurement frequency.
D ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

* typical figure for $25 \pm 10^{\circ} \mathrm{C}$, guaranteed for $25 \pm 5^{\circ} \mathrm{C}$.
O/C and S/C trim corrections under various conditions of interpolation, speed and level are as given in the table following these iso-accuracy charts.

For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.
If $D>0.1$, multiply accuracy by $\left(1+D^{2}\right)$.

High capacitance values

D accuracy $= \pm\left(A+R_{T} \cdot \omega C_{X}\right)$

Low capacitance values

D accuracy $= \pm\left(A+Y_{T} / \omega C x\right)$.
Capacitor series loss resistance (esr)
Accuracy $= \pm\left(\mathrm{A} / \omega \mathrm{C}_{\mathrm{x}}\right) \Omega$
Capacitor parallel loss resistance (epr)
Accuracy $= \pm\left(100 A R_{x} . \omega C_{x}\right)$ \% where:
A = accuracy from adjacent chart Cx=measured value of unknown component.
$R_{X}=$ measured value of unknown component.
$R_{T}=$ sum of Z_{I}, Z_{L} (as appropriate, from section 1.10.2)
$Y_{T}=$ sum of Y_{I}, Y_{L} (as appropriate,
from section 1.10.1)
$\omega=2 \pi$. frequency

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$
Slow Speed. 4-Terminal Mode.
Analyzer trimmed at measurement frequency.
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.

For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.
O / C and S / C trim corrections under various conditions of interpolation, speed and level are given in the table following these iso-accuracy charts.
For all Q values
Q accuracy $=A(Q+1 / Q)$
High inductance values
Read Q accuracy direct from chart Low inductance values
Q accuracy $= \pm\left(\left(\mathrm{A}+100 \mathrm{R}_{\mathrm{T}} / \omega \mathrm{L}_{\mathrm{x}}\right)(\mathrm{Q}+1 / \mathrm{Q})\right)$ \%
Inductor series loss resistance
Accuracy $= \pm(A . \omega L x / R x) \%$
Inductor parallel loss resistance
Accuracy $= \pm \frac{A . R x}{\omega L x} \%$

where

A = accuracy from adjacent chart $L_{x}=$ measured value of unknown component
Rx = measured value of unknown component.
$R_{T}=$ sum of Z_{I}, Z_{L} (as appropriate, from section 1.10.2).
$\omega=2 \pi$. frequency

1.10 Additional Corrections

The following tables give the additional corrections which need to be applied to measurements when some or all the measurement conditions specified in the Iso_Accuracy charts are not used.

1.10.1 Open Circuit Trim Correction

Frequency range (Hz)	Interpolation		Level	1.02-10V
	$\mathrm{Y}_{1}(\mathrm{nS})$	$\mathrm{Cl}_{1}(\mathrm{pF})$	$\mathrm{Y}_{\mathrm{L}}(\mathrm{nS})$	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$
20-250	1	0.15 / f	1	0.015 / f
300-10k	0.2	0.03 / f	0.2	0.03 / f
12k-100k	0.12 xf	0.02	0.12 xf	0.02
120k - 300k	0.31 xf	0.05	0.31 xf	0.05
302k-500k ${ }^{(1)}$	0.31 xf	0.05	0.31 xf	0.05

$f=$ frequency in $k H z, V=$ drive level in V

Frequency range (Hz)	Level 0.1-0.98V		Level $<0.1 \mathrm{~V}$	
	$\mathrm{Y}_{\mathrm{L}}(\mathrm{nS})$	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	$\mathrm{Y}_{\mathrm{L}}(\mathrm{nS})$	$C_{L}(\mathrm{pF})$
$20-250$	$0.4 / \mathrm{V}$	$0.06 /(\mathrm{f} \times \mathrm{V})$	$0.4 / \mathrm{V}$	$0.06 /(\mathrm{f} \times \mathrm{V})$
$300-10 \mathrm{k}$	$0.1 / \mathrm{V}$	$0.015 /(\mathrm{f} \times \mathrm{V})$	$0.1 / \mathrm{V}$	$0.015 /(\mathrm{f} \times \mathrm{V})$
$12 \mathrm{k}-100 \mathrm{k}$	$0.12 \times \mathrm{f}$	0.02	$0.012 \times \mathrm{f} / \mathrm{V}$	$0.002 / \mathrm{V}$
$120 \mathrm{k}-300 \mathrm{k}$	$0.31 \times \mathrm{f}$	0.05	$0.031 \times \mathrm{f} / \mathrm{V}$	$0.005 / \mathrm{V}$
$302 \mathrm{k}-500 \mathrm{k}^{(1)}$	$0.31 \times \mathrm{f}$	0.05	$0.031 \times \mathrm{f} / \mathrm{V}$	$0.005 / \mathrm{V}$

1.10.2 Short Circuit Trim Correction

$f=$ frequency in $k H z$

Frequency range (Hz)	Interpolation		Level 2-200mA		
	$\mathrm{Z}_{1}(\mu \Omega)$	$L_{1}(\mathrm{nH})$	$\mathrm{Z}_{\mathrm{L}}(\mu \Omega)$	$L_{L}(\mathrm{nH})$	
20	1500	240 / f	1500	240 / f	For drive levels below 2mA multiply level corrections in previous column by 2 / (level in mA).
25-80	1000	160 / f	1000	160 / f	
100	500	$80 / \mathrm{f}$	500	$80 / \mathrm{f}$	
120-10k	250	$40 / \mathrm{f}$	250	40 / f	
12k-300k	18 xf	3	$18 \times \mathrm{f}$	3	
$302 k-500 k^{(1)}$	$18 \times \mathrm{f}$	3	$18 \times \mathrm{f}$	3	

(1) Level restricted to $5 \mathrm{~V} / 100 \mathrm{~mA}$

1.11 General

1.11.1 Power Supply

Input Voltage $\quad 115 \mathrm{~V} \mathrm{AC} \pm 10 \%$ or $230 \mathrm{~V} \mathrm{AC} \pm 10 \%$ (selectable)
Frequency $\quad 50 / 60 \mathrm{~Hz}$
VA rating 150VA max
Input fuse rating 115 V operation: 2 AT
230 V operation: 1AT
The input fuse is in the fuse holder drawer integral to the IEC input connector.

1.11.2 Display

High contrast black and white LCD module 320×240 pixels with CPL back lighting.
Visible area $115 \times 86 \mathrm{~mm}$.

1.11.3 Printer Output

Centronics/parallel printer port for print-out of measurement results or bin count data.

1.11.4 Remote Control
 Designed to GPIB IEEE-488.2 and SCPI 1992.0.

1.11.5 Remote Trigger

Rear panel BNC with internal pull-up, operates on logic low or contact closure.

1.11.6 Mechanical

Height 150 mm (5.9")
Width 440 mm (17.37")
Depth 525 mm (20.5")
Weight $\quad 11 \mathrm{~kg}$ (24.25lbs)

1.12 Environmental Conditions

This equipment is intended for indoor use only in a non-explosive and non-corrosive atmosphere.

1.12.1 Temperature Range

Storage: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating: $\quad 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Normal accuracy: $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. See section 1.8 -Measurement Accuracy for full specification.

1.12.2 Relative Humidity

Up to 80% non-condensing.

1.12.3 Altitude

Up to 2000 m .

1.12.4 Installation Category

II in accordance with IEC664.

1.12.5 Pollution Degree

2 (mainly non-conductive)

1.12.6 Safety

Complies with the requirements of EN61010-1.

1.12.7 EMC

Complies with EN61326 for emissions and immunity.

26440 SPECIFICATION

Wayne Kerr Electronics Limited reserves the right to change specification without notice

2.1 Measurement Parameters

Any of the following parameters can be measured and displayed:

DC Functions

Resistance (Rdc).

AC Functions

Capacitance (C), Inductance (L), Resistance (R), Conductance (G), Susceptance (B), Reactance (X), Dissipation Factor (D), Quality Factor (Q), Impedance (Z), Admittance (Y) and Phase Angle (θ).

The following display formats are available:

Series or Parallel Equivalent Circuit

$\mathrm{C}+\mathrm{R}, \mathrm{C}+\mathrm{D}, \mathrm{C}+\mathrm{Q}, \mathrm{L}+\mathrm{R}, \mathrm{L}+\mathrm{Q}$

Series Equivalent Circuit Only
$X+R, X+D, X+Q$
Parallel Equivalent Circuit Only
$\mathrm{C}+\mathrm{G}, \mathrm{B}+\mathrm{G}, \mathrm{B}+\mathrm{D}, \mathrm{B}+\mathrm{Q}$
Polar Form
Z + Phase Angle, Y + Phase Angle

2.2 Test Conditions

2.2.1 AC Drive

Frequency Range

20 Hz to $3 \mathrm{MHz}>1800$ steps
Accuracy of set frequency $\pm 0.005 \%$

Pre-set frequencies

Coarse step setting
$20,25,30,40,50,60,80,100,120,150$; repeats for each decade.

Fine step setting
Step size 1% or better throughout range.

Drive Level (AC Measurements)

Open Circuit Voltage	Short Circuit Current	Frequency Range
1 mV to 10 V rms	$50 \mu \mathrm{~A}$ to 200 mA rms	up to 300 kHz
1 mV to 5 V rms	$50 \mu \mathrm{~A}$ to 100 mA rms	up to 500 kHz
1 mV to 2.5 V rms	$50 \mu \mathrm{~A}$ to 50 mA rms	up to 3 MHz

Signal source impedance: 50Ω nominal

Step Size

Voltage Drive		Current Drive	
Step size	up to drive level	Step size	up to drive level
1 mV	100 mV	$50 \mu \mathrm{~A}$	5 mA
2 mV	200 mV	$100 \mu \mathrm{~A}$	10 mA
5 mV	500 mV	$200 \mu \mathrm{~A}$	20 mA
10 mV	1 V	$500 \mu \mathrm{~A}$	50 mA
20 mV	2 V	1 mA	100 mA
50 mV	5 V	2 mA	200 mA *
100 mV	10 V *		

* Drive levels are reduced to 9 V and 180 mA at 40 Hz or below.

Automatic Level Control (ALC) ensures that the drive level at the device under test (DUT) is $\pm 2 \% \pm 1 \mathrm{mV}$ of set voltage or $\pm 2 \% \pm 0.1 \mathrm{~mA}$ of set current between 100 Hz and 500 kHz .

Drive level accuracy degrades below $100 \mathrm{~Hz}: \pm 3 \% \pm 1 \mathrm{mV}$ or $\pm 3 \% \pm 0.1 \mathrm{~mA}$ at 50 Hz $\pm 5 \% \pm 1 \mathrm{mV}$ or $\pm 5 \% \pm 0.1 \mathrm{~mA}$ at 20 Hz

Drive level accuracy degrades above $500 \mathrm{kHz}: \pm 4 \% \pm 1 \mathrm{mV}$ or $\pm 4 \% \pm 0.1 \mathrm{~mA}$ at 1 MHz
$\pm 8 \% \pm 1 \mathrm{mV}$ or $\pm 8 \% \pm 0.1 \mathrm{~mA}$ at 3 MHz
With DC bias applied the maximum drive voltages indicated above are halved.

2.2.2 DC Bias Voltage

A DC bias voltage derived from an internal or external source can be applied to capacitors during AC measurements.

Internal

DC bias of $2 \mathrm{~V} \pm 5 \%$.
Peak short circuit current $<90 \mathrm{~mA}$.

External

External bias of up to $\pm 60 \mathrm{~V}$ is provided by connecting an external power supply to the rear panel bias terminals. The voltage required at the rear terminals is 5% higher than the voltage at the DUT.

A bias load of 220Ω is permanently connected across the rear panel bias terminals.
Steady state short circuit load: 70Ω.
A resettable trip protects the bias circuit against a continuous short circuit.

2.2.3 Drive Level (Rdc)

Two selectable drive levels:

Open circuit voltage	Short circuit current
$100 \mathrm{mV} \pm 7 \%$	1 mA
$1 \mathrm{~V} \pm 7 \%$	10 mA

Source resistance: 100Ω nominal.

2.3 Measurement Speeds

Four selectable speeds for all measurement functions. Selecting slower measurement speed increases reading resolution and reduces measurement noise by averaging.
The following measurement periods apply for Rdc or for AC measurements $\geq 100 \mathrm{~Hz}$.
Maximum speed (intended for automatic sorting) $\approx 50 \mathrm{~ms}$.
Fast speed (for non-critical measurements) $\approx 100 \mathrm{~ms}$.
Medium speed (for improved resolution) $\approx 300 \mathrm{~ms}$.
Slow speed (for best resolution and enhanced supply frequency rejection) $\approx 900 \mathrm{~ms}$.

2.3.1 Capacitor Mode

Two frequency measurement $\approx 180 \mathrm{~ms}$.
2.4 Measurement Ranges
$\mathrm{R}, \mathrm{Z}, \mathrm{X} \quad 0.01 \mathrm{~m} \Omega$ to $>2 \mathrm{G} \Omega$
$\mathrm{G}, \mathrm{Y}, \mathrm{B} \quad 0.01 \mathrm{nS}$ to $>2 \mathrm{kS}$
$\mathrm{L} \quad 0.05 \mathrm{nH}$ to $>2 \mathrm{kH}$
$\mathrm{C} \quad 0.5 \mathrm{fF}$ to $>1 \mathrm{~F}$
D $\quad 0.00001$ to >1000
Q $\quad 0.00001$ to >1000
Rdc $\quad 0.1 \mathrm{~m} \Omega$ to $>10 \mathrm{M} \Omega$
For L and C , the lower range is available at $10 \mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz ; the upper range is available at 100 Hz and below.

2.5 Hardware Ranges

The hardware range used is determined by the impedance being measured, the frequency and the level. The table below lists the boundaries of operation for AC measurement functions. The hardware range being used is indicated in the top-left-hand-corner of the instrument display.

Range Number	Impedance coverage	Frequency coverage up to
1	$<1 \Omega$	100 kHz
2	$<10 \Omega$	1 MHz
3	$<50 \Omega$	3 MHz
4	$>50 \Omega$	3 MHz
5	$>250 \Omega$	3 MHz
6	$>2.5 \mathrm{k} \Omega$	1 MHz
7	$>25 \mathrm{k} \Omega$	100 kHz
8	$>250 \mathrm{k} \Omega$	10 kHz

For drive levels below 100 mV , the highest range at each frequency is not available.
For drive levels below 20 mA , range 1 is not available.
For drive levels below 0.5 mA , range 2 is not available.

2.6 Modes Of Operation

2.6.1 MEASUREMENT

Selection of any measurement parameter and test condition.
Single-level function-menu controlled by keypad and soft keys.
Single and repetitive measurements displaying major and minor terms.
Analogue scale with configurable $\mathrm{Hi} / \mathrm{Lo}$ limits giving PASS/FAIL indication (connected to logic output on binning option).

2.6.2 DEVIATION

Similar to MEASUREMENT MODE but relative or percentage deviation from nominal value displayed for major or minor term. There is no analogue scale in DEVIATION MODE.

2.6.3 MULTI FREQUENCY

Measurement parameters and test conditions set using MEASUREMENT MODE.
Up to 8 frequencies with configurable major and minor term limits.
PASS/FAIL indication (connected to logic output on binning option).

2.6.4 GRAPH

Measurement parameters and test conditions set using MEASUREMENT MODE.
Graphical sweep vs. frequency with selection of start frequency, stop frequency and step size. Linear/linear and linear/log scaling available on all measurement parameters. Log/log scaling available on Z/Y parameters.

Graph may be directly plotted on a printer or saved to a file over GPIB.

2.6.5 BINNING (Optional)

Measurement parameters and test conditions set using MEASUREMENT MODE.
8 PASS bins with absolute or percentage limits and 1 FAIL bin. Up to 99 sets of limits may be saved.

Bin count function logs the number of components in each bin.
Dedicated output for PASS/FAIL indication. Driven by analogue scale limits in MEASUREMENT MODE or by test limits in MULTI FREQUENCY MODE.

Trigger input with pull-up, operates on logic low or contact closure.
Handshake outputs indicating measure busy and data valid status.
25 -way D-type interface connector.

Output Levels (B1 Option)

Output High: $>4 \mathrm{~V} \quad$ Output Low: <1V
Input High: $\quad>3.5 \mathrm{~V} \quad$ Input Low: $<1.5 \mathrm{~V}$
Drive capability typically is 10 mA sink (low) and $30 \mu \mathrm{~A}$ (high).

Output Levels (B2 Option)

This option provides an opto-coupled interface.
Output On state current: up to 10 mA at $24 \mathrm{~V} \quad$ Output Off state current: $<0.5 \mathrm{~mA}$
Output On state voltage: Input voltage -1.5 V at 10 mA

Input High current:	$>3 \mathrm{~mA}$	Input Low current:	$<1.25 \mathrm{~mA}$
Input High voltage:	$>15.4 \mathrm{~V}$	Input Low voltage:	$<8 \mathrm{~V}$

2.6.6 CAPACITOR (Optional)

Combines the Multi Frequency and Binning modes for efficient testing of capacitors.
Measurement parameters and test conditions set using MEASUREMENT MODE.
Up to 8 frequencies with configurable major and minor term limits. The first frequency may be tested against up to 9 bins. The Major term is tested to a tolerance limit while the Minor term is compared to a relative limit. Measurements at subsequent frequencies may be compared to a single reject limit. A measurement term swap function is available if the minor term is required to be tested against a tolerance limit.

2.7 Measurement Connections

4 front panel BNC connectors permit 2-, 3- and 4-terminal connections with the screens at ground potential.

Terminals withstand connection of charged capacitor up to following limits:

- any value capacitor charged up to 50 V , either polarity;
- a capacitor charged to between 50 V and 500 V with a stored energy of less than 0.25 J , either polarity.

2.8 Measurement Accuracy

The accuracy statements given apply when the instrument is used under the following measurement conditions.
$1 \mathrm{~V}(\mathrm{DUT}>50 \Omega)$ or $20 \mathrm{~mA}(\mathrm{DUT}<50 \Omega)$, slow speed, 4-terminal measurement. The instrument must have warmed up for at least 30 minutes at a steady ambient temperature of between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. The instrument must have been trimmed with its measuring leads and fixture at the measurement frequency. For frequencies above 20 kHz , HF lead compensation must have been performed.

For other frequencies and speeds see section 2.9-Accuracy Charts.

2.8.1 Resistance / Reactance (R / X)

Frequency	Accuracy \% (for Q<0.1)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1Ω to $1.6 \mathrm{M} \Omega$
1 kHz (Notes 1,2)	0.02	10Ω to $100 \mathrm{k} \Omega$
1 kHz	0.05	1Ω to $1.6 \mathrm{M} \Omega$
10 kHz	0.05	1Ω to $1.6 \mathrm{M} \Omega$
10 kHz	0.1	0.3Ω to $4.7 \mathrm{M} \Omega$
100 kHz	0.05	25Ω to $100 \mathrm{k} \Omega$
100 kHz	0.1	2.5Ω to $500 \mathrm{k} \Omega$
1 MHz	0.1	30Ω to $16 \mathrm{k} \Omega$
1 MHz	0.2	12Ω to $30 \mathrm{k} \Omega$

[^0]2.8.2 Conductance / Susceptance (G / B)

Frequency	Accuracy \% (for Q < 0.1)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	$0.63 \mu \mathrm{~S}$ to 1 S
$1 \mathrm{kHz}{ }^{\text {(Notes } 1,3)}$	0.02	$10 \mu \mathrm{~S}$ to 0.1 S
1 kHz	0.05	$0.63 \mu \mathrm{~S}$ to 1 S
10 kHz	0.05	$0.63 \mu \mathrm{~S}$ to 1 S
10 kHz	0.1	$0.22 \mu \mathrm{~S}$ to 3.3 S
100 kHz	0.05	$10 \mu \mathrm{~S}$ to 0.04 S
100 kHz	0.1	$2 \mu \mathrm{~S}$ to 0.4 S
1 MHz	0.1	$62.5 \mu \mathrm{~S}$ to 67 mS
1 MHz	0.2	$33 \mu \mathrm{~S}$ to 83 mS

For $Q \geq 0.1$ multiply accuracy figures by $(1+Q)$.

2.8.3 Capacitance (C)

Frequency	Accuracy \% (for D <0.1)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1 nF to 1 mF
1 kHz	0.05	100 pF to $100 \mu \mathrm{~F}$
10 kHz	0.05	50 pF to $10 \mu \mathrm{~F}$
100 kHz	0.05	50 pF to 100 nF
100 kHz	0.1	25 pF to 350 nF
1 MHz	0.1	60 pF to 2.5 nF
1 MHz	0.2	30 pF to 10 nF

For $\mathrm{D} \geq 0.1$ multiply accuracy figures by (1+D).

2.8.4 Inductance (L)

Frequency	Accuracy \% (for Q >10)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	1 mH to 1000 H
1 kHz	0.05	$100 \mu \mathrm{H}$ to 100 H
10 kHz	0.05	$20 \mu \mathrm{H}$ to 10 H
100 kHz	0.1	$8 \mu \mathrm{H}$ to 160 mH
1 MHz	0.2	$2 \mu \mathrm{H}$ to 4 mH

For $Q \leq 10$, multiply the accuracy figure by $(1+1 / Q)$.

2.8.5 Dissipation Factor (D)

Frequency	Accuracy (Ad)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.0005	1 nF to 1 mF
1 kHz (Note 1)	0.0002	1 nF to $100 \mu \mathrm{~F}$
1 kHz	0.0005	100 pF to $400 \mu \mathrm{~F}$
10 kHz	0.0005	100 pF to $10 \mu \mathrm{~F}$
100 kHz	0.0005	100 pF to 60 nF
100 kHz	0.001	25 pF to 600 nF
1 MHz	0.001	25 pF to 2.5 nF
1 MHz	0.002	10 pF to 10 nF

For capacitors within the ranges shown above, D accuracy $= \pm A_{d}\left(1+D^{2}\right)$.
2.8.6 Quality Factor (Q)

Frequency	Accuracy \% (AL)	Range for specified accuracy
$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	0.05	4 mH to 1000 H
1 kHz	0.05	$100 \mu \mathrm{H}$ to 100 H
10 kHz	0.05	$20 \mu \mathrm{H}$ to 10 H
100 kHz	0.1	$7 \mu \mathrm{H}$ to 160 mH
1 MHz	0.2	$3.5 \mu \mathrm{H}$ to 4 mH

For inductors within the ranges shown above , Q accuracy $= \pm A_{L}(Q+1 / Q)$

2.8.7 DC Resistance (Rdc)

Drive Level	Accuracy \%	Range for specified accuracy
100 mV	0.25	10Ω to $10 \mathrm{k} \Omega$
1 V	0.1	1Ω to $100 \mathrm{k} \Omega$

Notes

1) Accuracy is typical for $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, guaranteed for $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
2) Accuracy applies to resistance only.
3) Accuracy applies to conductance only.

2.9 Accuracy Charts

Iso-accuracy charts define the measurement ranges available, at specified accuracies, over the available frequency band. All curves assume that Slow measurement speed is used, that the analyzer has been trimmed at the frequency used for measurements, that both factory calibration and self calibration are valid, that HF compensation has been performed on the fixture configuration being used and that the component under test is pure. Beside each chart is a summary of these conditions and the information on the accuracy applicable when some or all of the conditions change.

For above and below the ranges indicated in the following charts, the accuracy degrades linearly with increasing/decreasing DUT value. For example, $470 \mathrm{M} \Omega$ and $2.5 \mathrm{~m} \Omega$ measured at 10 kHz are both a factor of 10 beyond the indicated range for 1% and will each have an accuracy of 10%.

Measurement accuracy for the optional Multi Frequency capacitor mode conforms to the maximum speed setting.
2.9.1 R / G / Z* Accuracy

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$ Slow Speed. 4-Terminal Mode. Coarse Step frequencies.
Analyzer trimmed at measurement
frequency.
Q ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

* R / G Only
typical figure for $25 \pm 10^{\circ} \mathrm{C}$,
guaranteed for $25 \pm 5^{\circ} \mathrm{C}$.
O/C and S/C trim corrections under various conditions of interpolation, speed and level, and corrections for fine frequency settings are as given in the table following these iso-accuracy charts.
For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.

If $1>Q>0.1$, multiply R accuracy by (1+Q).
For $Q>1$ (loss resistance of inductor)
see Q accuracy chart.
For $D<1$ (loss resistance of capacitor) see D accuracy chart

High resistance values

Accuracy $= \pm\left(A+A_{F}+100 Y_{T} . R_{X}\right) \%$

Low resistance values

Accuracy $= \pm\left(A+100 R_{T} / R_{X}\right) \%$ where
A = accuracy from adjacent chart $A_{F}=$ fine frequency setting correction (as appropriate from section 2.10.3). $R_{x}=$ measured value of unknown component.
$\mathrm{R}_{\mathrm{T}}=$ sum of $\mathrm{Z}_{\mathrm{I}}, \mathrm{Z}_{\mathrm{L}}$ (as appropriate,
from section 2.10.2)
$Y_{T}=$ sum of Y_{l}, Y_{L}, G_{F} (as
appropriate, from sections 2.10.1 and 2.10.3)

Conductance (G)

Find accuracy for equivalent R value from $R=1 / G$

Admittance (Y)

Find accuracy for equivalent Z value from $Z=1 / Y$.

2.9.2 C Accuracy

Conditions

AC Drive Level: 1V/20mA
Slow Speed. 4-Terminal Mode.
Coarse Step frequencies.
Analyzer trimmed at measurement
frequency.
D ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.

For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

O/C and S/C trim corrections under various conditions of interpolation, speed and level, and corrections for fine frequency settings are as given in the table following these isoaccuracy charts.
For impure components, and for measurements of the highest and owest available ranges, full accuracy expressions, shown below, apply.
If $D>0.1$, multiply C accuracy by (1+D).

High capacitance values
Accuracy $= \pm\left(A+A_{F}+100 X_{T} . \omega C_{X}\right)$ \%

Low capacitance values

Accuracy $= \pm\left(\mathrm{A}+100 \mathrm{C}_{\mathrm{T}} / \mathrm{C}_{\mathrm{X}}\right) \%$ where

A = accuracy from adjacent chart $A_{F}=$ fine frequency setting correction (as appropriate from section 2.10.3).
$C_{X}=$ measured value of unknown component.
$X_{T}=$ sum of Z_{l}, Z_{L} (as appropriate, from section 2.10.2)
$\mathrm{C}_{\mathrm{T}}=$ sum of $\mathrm{C}_{\mathrm{l}}, \mathrm{C}_{\mathrm{F}}, \mathrm{C}_{\mathrm{L}}$ (as
appropriate, from sections 2.10.1
and 2.10.3)
$\omega=2 \pi$. frequency
2.9.3 L Accuracy

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$
Slow Speed. 4-Terminal Mode.
Coarse Step frequencies.
Analyzer trimmed at measurement
frequency.
$Q \geq 10$
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.
For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

O/C and S/C trim corrections under various conditions of interpolation, speed and level, and corrections for fine frequency settings are as given in the table following these isoaccuracy charts.
For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.
If $Q<10$, multiply L accuracy by ($1+1 / \mathrm{Q}$).
High inductance values
Read accuracy direct from chart
Low inductance values
Accuracy $= \pm\left(A+100 L_{T} / L_{x}\right) \%$

where

A = accuracy from adjacent chart $\mathrm{L}_{\mathrm{x}}=$ measured value of unknown component.
$\mathrm{L}_{\mathrm{T}}=$ sum of $\mathrm{L}_{\mathrm{l}}, \mathrm{L}_{\mathrm{L}}$ (as appropriate, from section 2.10.2)
2.9.4 D Accuracy

Conditions

AC Drive Level: 1V/20mA
Slow Speed. 4-Terminal Mode.
Coarse Step frequencies.
Analyzer trimmed at measurement
frequency.
D ≤ 0.1
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.

For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.

* typical figure for $25 \pm 10^{\circ} \mathrm{C}$, guaranteed for $25 \pm 5^{\circ} \mathrm{C}$.
O / C and S / C trim corrections under various conditions of interpolation, speed and level, and corrections for fine frequency settings are as given in the table following these isoaccuracy charts.

For impure components, and for measurements of the highest and lowest available ranges, full accuracy expressions, shown below, apply.
If $D>0.1$, multiply D accuracy by $\left(1+D^{2}\right)$.

High capacitance values
D accuracy $= \pm\left(A+R_{T} \cdot \omega C x\right)$
Low capacitance values
D accuracy $= \pm\left(A+Y_{T} / \omega C_{X}\right)$
Capacitor series loss resistance (esr)
Accuracy $= \pm\left(A / \omega C_{x}\right) \Omega$
Capacitor parallel loss resistance (epr)

Accuracy $= \pm\left(100 A R_{x} . \omega C_{x}\right) \%$
where
A = accuracy from adjacent chart $C_{X}=$ measured value of unknown component
$\mathrm{R}_{\mathrm{X}}=$ measured value of unknown component
$R_{T}=$ sum of $Z_{I}, Z_{L}, 1 / G_{F}$ (as
appropriate, from sections 2.10.2
and 2.10.3)
$Y_{T}=$ sum of Y_{I}, Y_{L} (as appropriate,
from section 2.10.1)
$\omega=2 \pi$. frequency
2.9.5 Q Accuracy

Conditions

AC Drive Level: $1 \mathrm{~V} / 20 \mathrm{~mA}$
Slow Speed. 4-Terminal Mode.
Coarse Step frequencies.
Analyzer trimmed at measurement
frequency.
Temperature range $25 \pm 10^{\circ} \mathrm{C}$.
Except on the highest and lowest hardware measurement ranges, the adjacent iso-accuracy chart also applies to Medium measurement speed.

For Fast speed, on all ranges, the Medium speed figures must be doubled. Supply frequency rejection is also reduced causing additional unquantifiable errors dependent on lead layout, particularly at frequencies below 600 Hz and at lower AC drive levels.
O/C and S/C trim corrections under various conditions of interpolation, speed and level, and corrections for fine frequency settings are as given in the table following these iso-accuracy charts.

For all \mathbf{Q} values

Q accuracy =A (Q +1/Q)
High inductance values
Read Q accuracy direct from chart
Low inductance values
Q accuracy $= \pm\left(\left(A+100 R_{T} / \omega L_{x}\right)\right.$ (Q+1/Q)) \%

Inductor series loss resistance
Accuracy $= \pm$ (A. $\omega \mathrm{Lx} / \mathrm{Rx}$) \%
Inductor parallel loss resistance
Accuracy $= \pm \frac{A . R x}{\omega L x} \%$
where
A = accuracy from adjacent chart
$L x=$ measured value of unknown
component
$R_{x}=$ measured value of unknown
component
$\mathrm{R}_{\mathrm{T}}=$ sum of $\mathrm{Z}_{\mathrm{I}}, \mathrm{Z}_{\mathrm{L}}$ (as appropriate, from
section 2.10.2)
$\omega=2 \pi$. frequency

2.10 Additional Corrections

The following tables give the additional corrections which need to be applied to measurements when some or all the measurement conditions specified in the Iso_Accuracy charts are not used.

2.10.1 Open Circuit Trim Correction

$\mathrm{f}=$ frequency in kHz

Frequency range (Hz)	Interpolation		Level 1.02-10V	
	$Y_{I}(n S)$	$C_{I}(p F)$	$Y_{L}(n S)$	$C_{L}(p F)$
$20-250$	1	$0.15 / f$	1	$0.015 / f$
$300-10 k$	0.2	$0.03 / f$	0.2	$0.03 / f$
$12 k-100 \mathrm{k}$	$0.12 \times f$	0.02	$0.12 \times f$	0.02
$120 \mathrm{k}-300 \mathrm{k}$	$0.31 \times f$	0.05	$0.31 \times f$	0.05
$302 \mathrm{k}-1 \mathrm{M}{ }^{(1)}$	$0.31 \times f$	0.05	$0.31 \times f$	0.05
$1.01 \mathrm{M}-3 M^{(2)}$	$3.1 \times \mathrm{f}$	0.5	$3.1 \times \mathrm{f}$	0.5

$\mathrm{f}=$ frequency in kHz , $\mathrm{V}=$ drive level in V

Frequency range (Hz)	Level 0.1-0.98V		Level < 0.1V	
	$\mathrm{Y}_{\mathrm{L}}(\mathrm{nS})$	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	$\mathrm{Y}_{\mathrm{L}}(\mathrm{nS})$	$C_{\mathrm{L}}(\mathrm{pF})$
$20-250$	$0.4 / \mathrm{V}$	$0.06 /(\mathrm{f} \times \mathrm{V})$	$0.4 / \mathrm{V}$	$0.06 /(\mathrm{f} \times \mathrm{V})$
$300-10 \mathrm{k}$	$0.1 / \mathrm{V}$	$0.015 /(\mathrm{f} \times \mathrm{V})$	$0.1 / \mathrm{V}$	$0.015 /(\mathrm{fx} \mathrm{V})$
$12 \mathrm{k}-100 \mathrm{k}$	$0.12 \times \mathrm{f}$	0.02	$0.012 \times \mathrm{f} / \mathrm{V}$	$0.002 / \mathrm{V}$
$120 \mathrm{k}-300 \mathrm{k}$	$0.31 \times \mathrm{f}$	0.05	$0.031 \times \mathrm{f} / \mathrm{V}$	$0.005 / \mathrm{V}$
$302 \mathrm{k}-640 \mathrm{k}^{(1)}$	$0.31 \times \mathrm{f}$	0.05	$0.031 \times \mathrm{f} / \mathrm{V}$	$0.005 / \mathrm{V}$
$645 \mathrm{k}-1 \mathrm{M}{ }^{(1)}$	$0.31 \times \mathrm{f}$	0.05	$0.31 \times \mathrm{ff} / \mathrm{V}$	$0.05 / \mathrm{V}$
$1.01 \mathrm{M}-3 \mathrm{M}^{(2)}$	$3.1 \times \mathrm{f}$	0.5	$0.31 \times \mathrm{f} / \mathrm{V}$	$0.05 / \mathrm{V}$

2.10.2 Short Circuit Trim Correction

$\mathrm{f}=$ frequency in kHz

Frequency range (Hz)	Interpolation		Level 2-200mA		
	$Z_{1}(\mu \Omega)$	$L_{1}(\mathrm{nH})$	$\mathrm{Z}_{\mathrm{L}}\left({ }_{\mu} \Omega\right)$	$L_{L}(\mathrm{nH})$	
20	1500	240 / f	1500	240 /f	For drive levels below 2 mA multiply level corrections in previous column by 2 / (level in mA).
25-80	1000	160 /f	1000	160 /f	
100	500	80 / f	500	80 / f	
120-10k	250	40 /f	250	40 /f	
12k - 300k	18 xf	3	18 xf	3	
302k-1M ${ }^{(1)}$	$18 \times f$	3	$18 \times f$	3	
$1.01 \mathrm{M}-3 \mathrm{M}^{(2)}$	$36 \times f$	6	$36 \times f$	6	

(1) Level restricted to $5 \mathrm{~V} / 100 \mathrm{~mA}$
(2) Level restricted to $2.5 \mathrm{~V} / 50 \mathrm{~mA}$

2.10.3 Fine Frequency Setting Corrections

Drive level $=1 \mathrm{~V}$

Frequency range (Hz)	$C_{F}(\mathrm{fF})$	$\mathbf{A}_{F}(\%)$	$\mathbf{G}_{F}(\mathrm{nS})$	$\mathbf{A}_{F}(\%)$
$20 \mathrm{k}-100 \mathrm{k}$	10	0.02	$0.063 \times \mathrm{f}$	0.02
$101 \mathrm{k}-1 \mathrm{M}$	20	0.035	$0.126 \times \mathrm{f}$	0.035
$1.01 \mathrm{M}-3 \mathrm{M}$	100	0.065	$0.630 \times f$	0.065

Drive level $<1 \mathrm{~V}$

Frequency range (Hz)	$C_{F}(f F)$	$\mathbf{A}_{F}(\%)$	$G_{F}(n S)$	$A_{F}(\%)$
$20 \mathrm{k}-100 \mathrm{k}$	$10 /$ level in V	$0.02 /$ level in V	$0.063 \times \mathrm{f} /$ level in V	$0.02 /$ level in V
$101 \mathrm{k}-1 \mathrm{M}$	$20 /$ level in V	$0.035 /$ level in V	$0.126 \times \mathrm{f} /$ level in V	$0.035 /$ level in V
$1.01 \mathrm{M}-3 \mathrm{M}$	$100 /$ level in V	$0.065 /$ level in V	$0.630 \times \mathrm{f} /$ level in V	$0.065 /$ level in V

Drive level $>1 \mathrm{~V}$

Frequency range (Hz)	$C_{F}(f F)$	$\mathbf{A}_{F}(\%)$	$G_{F}(n S)$	$A_{F}(\%)$
$20 \mathrm{k}-100 \mathrm{k}$	30	0.03	$0.19 \times f$	0.03
$101 \mathrm{k}-1 \mathrm{M}$	100	0.04	$0.63 \times f$	0.04
$1.01 \mathrm{M}-3 \mathrm{M}$	900	0.175	$5.65 \times f$	0.175

2.11 General

2.11.1 Power Supply

Input Voltage $\quad 115 \mathrm{~V} \mathrm{AC} \pm 10 \%$ or $230 \mathrm{~V} \mathrm{AC} \pm 10 \%$ (selectable)
Frequency $\quad 50 / 60 \mathrm{~Hz}$
VA rating $\quad 150 \mathrm{VA}$ max
Input fuse rating $\quad 115 \mathrm{~V}$ operation: 2 AT
230 V operation: 1AT
The input fuse is in the fuse holder drawer integral to the IEC input connector.

2.11.2 Display

High contrast black and white LCD module 320×240 pixels with CPL back lighting.
Visible area $115 \times 86 \mathrm{~mm}$.

2.11.3 Printer Output

Centronics/parallel printer port for print out of measurement results, bin count data and graphical display.

2.11.4 Remote Control

Designed to GPIB IEEE-488.2 and SCPI 1992.0.

2.11.5 Remote Trigger

Rear panel BNC with internal pull-up, operates on logic low or contact closure.

2.11.6 Mechanical

Height 150 mm (5.9")
Width 440 mm (17.37")
Depth $525 \mathrm{~mm}\left(20.5^{\prime \prime}\right)$
Weight $\quad 11 \mathrm{~kg}$ (24.25lbs)

2.12Environmental Conditions

This equipment is intended for indoor use only in a non-explosive and non-corrosive atmosphere.

2.12.1 Temperature Range

Storage: $\quad-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Normal accuracy: $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. See section 2.8—Measurement Accuracy for full specification.

2.12.2 Relative Humidity

Up to 80% non-condensing.

2.12.3 Altitude

Up to 2000 m .

2.12.4 Installation Category

II in accordance with IEC664.

2.12.5 Pollution Degree

2 (mainly non-conductive).

2.12.6 Safety

Complies with the requirements of EN61010-1.

2.12.7 EMC

Complies with EN61326 for emissions and immunity.

3 THEORY REFERENCE

3.1 Abbreviations

B \quad Susceptance ($=1 / \mathrm{X}$)
C Capacitance
D Dissipation factor $(\tan \delta)$
E Voltage
G Conductance (= $1 / \mathrm{R}$)
I Current
L Inductance
Q Quality (magnification) factor

R Resistance
X Reactance
Y \quad Admittance ($=1 / Z$)
Z Impedance
$\omega \quad 2 \pi \mathrm{x}$ frequency

Subscript s (s) $=$ series
Subscript $\mathrm{p}(\mathrm{p})=$ parallel

3.2 Formulae

$\mathrm{Z}=\frac{\mathrm{E}}{\mathrm{I}} \quad$ (all terms complex)
$Y=\frac{I}{E}=\frac{1}{Z}$
$Z_{s}=R+j X=R+j \omega L=R-\frac{j}{\omega C}$
$\left|Z_{s}\right|=\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}$
$\left|Z_{p}\right|=\frac{R X}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}$
$Y_{p}=G+j B=G+j \omega C=G-\frac{j}{\omega L}$
$\left|Y_{p}\right|=\sqrt{\left(\mathrm{G}^{2}+\mathrm{B}^{2}\right)}$
$\left|Y_{s}\right|=\frac{G B}{\sqrt{\left(\mathrm{G}^{2}+\mathrm{B}^{2}\right)}}$
where $\quad X_{\mathrm{L}}=\omega \mathrm{L} \quad \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}} \quad \mathrm{B}_{\mathrm{C}}=\omega \mathrm{C} \quad \mathrm{B}_{\mathrm{L}}=\frac{1}{\omega \mathrm{~L}}$
$\mathrm{Q}=\frac{\omega \mathrm{L}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}}=\frac{1}{\omega \mathrm{C}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}} \quad$ (series R, L, C values)
$Q=\frac{R_{P}}{\omega L_{P}}=\omega C_{P} R_{P} \quad$ (parallel R, L, C values
$D=\frac{G_{P}}{\omega C_{P}}=\omega L_{P} G_{P} \quad$ (parallel G, L, C values)
$D=\frac{R_{s}}{\omega L_{s}}=\omega C_{s} R_{s} \quad$ (series R, L, C values)
Note: The value $\mathrm{Q}=\frac{1}{\mathrm{D}}$ is constant regardless of series/parallel convention

3.3 Series/Parallel Conversions

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{R}_{\mathrm{P}}}{\left(1+\mathrm{Q}^{2}\right)} & \mathrm{R}_{\mathrm{P}}=\mathrm{R}_{\mathrm{S}}\left(1+\mathrm{Q}^{2}\right) \\
\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{\mathrm{P}}\left(1+\mathrm{D}^{2}\right) & \mathrm{C}_{\mathrm{P}}=\frac{\mathrm{C}_{\mathrm{s}}}{\left(1+\mathrm{D}^{2}\right)} \\
\mathrm{L}_{\mathrm{S}}=\frac{\mathrm{L}_{\mathrm{P}}}{\left(1+\frac{1}{\mathrm{Q}^{2}}\right)} & \mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{S}}\left(1+\frac{1}{\mathrm{Q}^{2}}\right)
\end{array}
$$

Conversions using the above formulae will be valid only at the test frequency.

3.4 Polar Derivations

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{S}}=|\mathrm{Z}| \cos \theta & \mathrm{G}_{\mathrm{P}}=|\mathrm{Y}| \cos \theta \\
\mathrm{X}_{\mathrm{S}}=|\mathrm{Z}| \sin \theta & \mathrm{B}_{\mathrm{P}}=|\mathrm{Y}| \sin \theta
\end{array}
$$

Note that, by convention, +ve angle indicates an inductive impedance or capacitive admittance.
If capacitance is measured as inductance, the L value will be -ve .
If inductance is measured as capacitance, the C value will be -ve .
$\mathrm{D}=\tan \delta \quad$ where $\delta=(90-\theta)^{\circ} \quad$ admittance measurement.
$\mathrm{Q}=\frac{1}{\tan \delta} \quad$ where $\delta=(90-\theta)^{\circ} \quad$ impedance measurement.

[^0]: For $Q \geq 0.1$ multiply accuracy figures by ($1+\mathrm{Q}$).

